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1 Introduction

This paper studies a network model of decentralized markets with intermediation.

The network perspective, which puts the structure of connections between trading

parties at the heart of the analysis, is particularly appropriate for the study of mar-

kets in which existing relationships matter for the interaction of economic agents.

Many settings can be usefully thought of as networked markets, including markets

explicitly relying on transport networks (pipelines, rail networks, ports) as well as

markets where the connections are less tangible and consist of relationships such

as in over-the-counter (OTC) trading in financial markets, international trade, and

complex consumer goods, for example, in real-estate and insurance. In the latter

markets, connections take the form of relationships built on trust, a history of previ-

ous interaction or having sufficient information about trading partners. For exam-

ple, in financial markets, a pre-existing relationship helps OTC traders to manage

their counterparty risk exposure, overcome reputational concerns and ensure that

effective collateral provisions are in place.

In these relationship-based markets we often find intermediaries in the form of

dealers, brokers andmarket makers that provide intermediation services for actors

that do not trade directly with each other. The need for such intermediation arises

naturally in network settings whenever there are opportunities for trade involving

two parties that do not have a direct relationship, preventing them from dealing

with each other directly. They may then nonetheless exploit their opportunities for

mutual trade by engaging indirectly and involving one ormore intermediaries, that

provide the necessary chain of relationships to make the trade feasible.

In this paper I propose a modeling approach that explicitly incorporates a net-

work perspective on intermediation activity. The approach brings into focus the
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role and the value of relationships used by third parties to facilitate transactions be-

tween economic agents who otherwisemight lack the opportunity to conduct trade

directly. Specifically, I present a dynamic model of multilateral bargaining and ex-

change in a network setting with intermediation. Each period, a randommatching

process selects a route, that is, a group of players connecting two trading parties via

connecting intermediaries in the network. One — randomly selected — player on

the route can make a proposal to the other players. If it is accepted, the trade is

implemented and, importantly, the game ends, that is, there is no replacement. If

at least one player on the route rejects, a new route and proposer are drawn. I show

that the model has a stationary subgame perfect equilibrium in which payoffs are

characterized through an intuitive set of value function equations and use this to

study efficiency and the sharing of surplus between parties. The equilibrium pay-

offs illustrate the effect that competition between intermediation routes has on the

payoffs players can expect. Efficiency considerations come into play when different

routes may offer different levels of surplus, resulting for example from variation in

buyer valuations or trade costs. The question is then to find the correct routes to

trade on. I show that while in equilibrium players never unduly delay trade and

refuse to agree on a route where trade would be efficient, there can exist instances

where players agree to trade on inefficient routes when delay would be welfare im-

proving. This inefficiency arises from the strategic advantage for players who can

trade across multiple routes with alternative players. They can increase their own

payoffs relative to those who are in competition with each other. Players thus have

an incentive to keep in play multiple routes, even if not all of them are efficient for

trade.

That markets for financial assets may be thought of as networks is powerfully

exposed by looking at the data on trades in such markets. Early work in this direc-
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tion includes Upper and Worms (2004) and Craig and von Peter (2014) analyzing

the German interbank market. Their data reveal a network in a core-periphery

structure with many peripheral banks that do not trade directly with others but

only through the well-connected intermediaries forming the core of the network.

The model in this paper can be usefully seen to capture a market with such a core-

periphery configuration: The sellers in the model represent banks in the periphery

trying to access potential other buyers that are also in the periphery. As no direct

connections exist between banks in the periphery, intermediaries from the core of

the network are required to facilitate the trade. Themodel then offers useful predic-

tions concerning the trading patterns across the network as well as the incentives

for the banks to position themselves in the network.

While I refer to buyers and sellers throughout the paper, themodelmay usefully

be applied to study other value-adding interactions between multiple actors, such

as liquidity provision between banks, R &D cooperation between firms, the forma-

tion of joint companies by multiple entrepreneurs, government coalition formation

in political economy settings, etc.

The model is built around a one-off trade opportunity. Once trade concludes,

the game is over and there is no replacement, which is a key distinguishing fac-

tor relative to the existing literature such as Nguyen (2015) and Manea (2018).

This assumption of no replacement approximates trade in thin, highly customized

products, such as complex financial securities commonly traded in OTC markets.

It contrasts with markets of more generic assets such as commodities or standard

financial contracts where there may bemany buyers and sellers in themarket at the

same time. Such trades are easier to move to standardized trading platforms and

central counter-parties. Even then, players might still prefer to trade via preferred

dealers as shown, for example, in J. Allen and Wittwer (2023). In addition, some
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alternative applications for the model, such as cooperations in R & D where the

output is a patent or other innovation, tend to exhibit very notable first-mover ad-

vantages, such that the first successful coalition capturesmost of the available gains.

The assumption of a one-off opportunity without replacement describes well such

first-mover advantages.

The paper is structured as follows. The next Section 2 provides the literature

context for the research questions investigated. Section 3 sets out the model and

Section 4 characterizes the equilibrium. An analysis and key results of the paper

concerning efficiency and the relationship between structural features and payoffs

are presented in Sections 5 and 6. Section 7 concludes.

2 Literature Context

This paper presents a contribution to the fast-growing literature on trade in net-

works and, in particular, the analysis of intermediation in such networks.

The provision of intermediation services and middlemen activities which this

paper investigates in a network setting has been investigated in other non-structural

frameworks by several authors, with overviews provided in Bose (2001) and Spul-

ber (1999). Intermediaries have been creditedwith a number of different functions,

including the provision of immediacy (Demsetz, 1968), or acting as a screening de-

vice between different types of traders that might be prevented from engaging di-

rectlywith each other as in Bose and Pingle (1995) or Brusco and Jackson (1999). In

the latter, an intermediary arises endogenously to overcome inefficiencies in trade

across competitive markets. A seminal paper in this literature is Rubinstein and

Wolinsky (1987). They investigate a setting with three types of players: buyers,

sellers, and middlemen. Trade is conducted based on stochastic pairwise match-
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ing and a steady state equilibrium is derived.1 A key insight of that paper is that

the outcome of trade and the terms of trade depend on whether the middleman

takes ownership of the good from sellers or work on a consignment basis. In the

first case, the market is biased in favor of buyers, whereas in the second case sym-

metry between parties is restored. Duffie, Gârleanu, and Pedersen (2005) study a

search andmatching model for OTCmarkets. They analyze a model in which trad-

ing opportunities arise endogenously and study amongst others the implications

of greater competition for intermediation services. As in Rubinstein and Wolinsky

(1987), the model does not capture heterogeneity in the connections that traders

may have to the intermediaries and amongst the intermediaries itself.

In contrast to the work cited above, structural features are at the core of a fast-

growing literature on exchange in networks with numerous recent contributions.

Seminal early works in this field include Corominas-Bosch (2004) on bargaining in

networks and the exchange model in Kranton and Minehart (2001). Both adopt a

bipartite networks approach, precluding an analysis of intermediation. More re-

cent contributions in this direction include Manea (2011), Elliott (2015), Polanski

(2007) and Polanski and Vega-Redondo (2017). Models which allow for multiple

steps in trading come in two distinct flavors. Gale and Kariv (2007), Manea (2018)

and Gofman (2017) all consider a trading protocol in which the good travels from

seller to buyer in a stepwise fashion, with traders interacting bilaterally at each

step. The paper by Nava (2015), which studies quantity competition instead of an

explicit bargaining setting, arguably also falls into this category as intermediaries

benefit from double marginalization, that is, extracting rents both upstream from

sellers and downstream from buyers.
1In steady state equilibrium the outflow of pairs of traders who conclude a trade is exactly balanced
by an exogenously given inflows of players.
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Adifferent groupof papers includingBlume et al. (2009), Polanski andLazarova

(2015) and Nguyen (2015) allow for simultaneous multilateral interaction, which

is also the approach I adopt in this paper. The key distinction of the current work

is that contrary to Blume et al. (2009) I consider an explicit bargaining protocol

whereas they consider price-setting intermediaries (whom they call “traders”).

Furthermore, different from Nguyen (2015) and Polanski and Lazarova (2015) I

focus on a setting without replacement, that is, an environment where parties that

conclude a trade are not replaced by replica players. My model is therefore more

suitable to study markets where “trade opportunities” are just that: opportunities

that ought to be taken, where a decision not to act carries an opportunity cost via

the risk of missing out.2 The model thus offers insights for real world markets

where trade opportunities are not limitless, which arguably is the case in many

relationship-based markets, including for financial and non-financial assets as well

as interactions in which players collaborate to conduct a project together, for ex-

ample, an R & D joint venture. The assumption of no replacement has significant

implications for the equilibrium predictions. For example, competition between

multiple intermediaries to facilitate the trade is significantly tougher than in mod-

els with replacement.

The literature on financial networks employs network tools to analyze various

aspects of financial markets, including risk sharing and contagion amongst finan-

cial institutions. An overview is provided in F. Allen and Babus (2009). Recent

contributions in Babus and Hu (2017) and Farboodi (2023) provide a network per-

spective toOTC trading and investigate the incentives for financial institutions seek-

ing to exchange assets to form relationships for trading and intermediation.
2And even if a new, similar opportunity were to arise, the opportunity cost argument still applies
as long as players are not prevented from taking part in more than a single trade.
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Finally, at a technical level, this paper employs the framework of stochastic bar-

gaining games with perfect information analyzed in detail in Merlo and Wilson

(1995, 1998) and extends it for use in analyzing games on networks. One contri-

bution of my paper to this literature is to identify a different source of equilibrium

inefficiency in such stochastic bargaining settings, which does not arise in the set-

ting of Merlo and Wilson (1995, 1998) as their model does not allow for the set of

players bargaining to change between periods. This feature is crucial in the net-

work setting I study as the changing coalitions correspond naturally to different

trade routes and from a strategic perspective introduce the possibility that players

may be excluded from the bargaining table, which has important implications for

the analysis.

3 Model

This section presents amodel inwhich players bargain over a surplus on a network.

We consider a setting in which a network of relationships describes the possibilities

for players to interact. Players have access to an opportunity that generates surplus,

for example, generated by transferring an asset from a seller with a low valuation

for the asset to a buyer with a high valuation, in the spirit of Duffie, Gârleanu, and

Pedersen (2005). Players are matched along the network of existing relationships

and bargain over the allocation of the available surplus within groups that form

feasible trade routes. The bargaining protocol allows for the random selection of

trade routes as well as the identity of the proposer, incorporating the notion of

competition between different alternative trade routes.

The model I present here includes a number of stark simplifying assumptions,

for example, concerning the underlying matching and bargaining protocol. These
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have been imposed tomake the exposition as clean and transparent as possible. The

general insights remain valid under less restrictive assumptions on many elements

of the model.

Players Players are denoted by the set 𝑁 = {1, 2, . . . , 𝑛}. There is a set of sellers

labelled 𝐴 = {𝐴1, 𝐴2, . . . } ∈ 𝑁 who have access to a single, indivisible good

that they can sell to any one of a set of buyers 𝐵 = {𝐵1, 𝐵2, . . . } ⊂ 𝑁 such that

𝐵 ∩ 𝐴 = ∅.3

Trade Network Players interact according to an undirected network denoted by

𝑔 = (𝑁, 𝐸) where the set of edges 𝐸 ⊂ {(
𝑖 , 𝑗

)
: 𝑖 ≠ 𝑗 ∈ 𝑁}

describes the set of

feasible bilateral interactions. We restrict attention to networks where buyers

only connect to intermediaries or sellers, and sellers only connect to interme-

diaries and buyers. Intermediaries can connect to buyer, sellers, and other

intermediaries. This assumption is consistent with the core-periphery struc-

ture that has been found inmany networkmarkets such as financial networks

(Li and Schürhoff, 2018; Craig and von Peter, 2014). A seller and a buyer can

tradewith each other other if and only if there exists a path in 𝑔 between them.

As will be described in greater detail below, trade between two nodes that are

only indirectly connected is feasible through intermediaries if there exists at

least one path between them. I assume that the network is connected.4

Routes A route 𝑅 ⊆ 𝑁 between a pair of nodes 𝑖 and 𝑗 is an unordered set of nodes

such that there exists a path (𝑖1, . . . , 𝑖𝐾) with (𝑖𝑘 , 𝑖𝑘+1) ∈ 𝐸 ∀ 𝑘 = 1, 2, . . . , 𝐾,

𝑖1 = 𝑖, 𝑖𝐾 = 𝑗 and each node in the sequence distinct. As the network is
3The labels of buyers and sellers can be reversed without consequence for further analysis. The key
simplification of the model is that there is just one trade opportunity, and one node is involved in
all possible coalitions that can realize the opportunity.

4This assumption is without loss of generality here as disconnected players simply cannot trade.
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connected by assumption there exists at least one path in the network 𝑔 be-

tween each buyer/seller pair. We call such a set of nodes connecting a seller

𝐴𝑖 and a given buyer 𝐵 𝑗 a route. Each route 𝑅𝑙 has a surplus 𝑣𝑙 attached to

it reflecting the surplus available, that is, buyer valuation less any costs in-

cluding the seller’s reservation price. Depending on the network 𝑔, for any

given buyer-seller pair there may be multiple feasible routes involving differ-

ent combinations of intermediaries.5

Matching and Bargaining Protocol The model operates in discrete time. In each

period players arematched and bargain under a stochastic route selection and

bargaining protocol building on Merlo and Wilson (1995) as follows.

Each period one trade route including a seller and a buyer is activated and an

order of play for players on this route is randomly determined. Based on this

draw, players who are on the route bargain according to the order prescribed

within the state, with the first acting as proposer.

Formally, in each period a state 𝑠 from finite state space 𝑆 is selected by a

Markov process 𝜎 = (𝜎0, 𝜎1, 𝜎2, . . .). A state 𝑠 contains information about

three elements of the model:

i. The active buyer 𝐵(𝑠) ∈ 𝐵.

ii. The route𝑅(𝑠) ⊆ 𝑁 connecting the pair of playerswho have the trade op-

portunity with associated valuation 𝑣(𝑠), representing the surplus avail-

able in state 𝑠 if there is agreement.

iii. A permutation 𝜌(𝑠) on 𝑅(𝑠) which denotes the order in which players

move through the bargaining protocol. 𝜌𝑖(𝑠) ∈ 𝑁 denotes the player
5One may restrict attention to shortest paths or geodesics only, but this restriction is not essential
for the analysis.
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moving in 𝑖-th position. Following Merlo and Wilson (1995) we denote

by 𝜅(𝑠) ≡ 𝜌1(𝑠) the first mover in the order.

We take the set of states 𝑆 to span all feasible trade routes in 𝑔 as well as for

each route all permutations of players on that route. Furthermore, to simplify

the exposition I assume that 𝜎 is time homogeneous, such that 𝜎𝑡 = 𝜎𝑡′ ∀ 𝑡 , 𝑡′
and each period’s draw is independent of the previous period’s state. The in-

dependent ex-ante probability of state 𝑠 is denoted 𝜋(𝑠). Finally, we assume

each 𝑠 ∈ 𝑆 is drawn with strictly positive probability. Thus, every route is se-

lected, and every player is called upon as proposer with positive probability.6

On realization of state 𝑠, player 𝜅(𝑠) may propose an allocation or pass. If

a proposal is made, this takes the form of a vector 𝑥 ∈ R𝑛 such that 𝑥𝑖 ≥
0 ∀ 𝑖 ∈ 𝑅(𝑠). We assume that any players not on the route are offered zero

payoffs, that is, 𝑥𝑖 = 0 ∀ 𝑖 ∉ 𝑅(𝑠).7 For the proposal to be feasible requires

that
∑
𝑖∈𝑅(𝑠) 𝑥𝑖 ≤ 𝑣(𝑠). A proposal 𝑥 thus represents a split of available surplus

amongst the players on the route, allocating a nonnegative share 𝑥𝑖 of the

surplus to each player in 𝑅(𝑠) and a zero share of the surplus to all excluded

players. The other players on the route then respond sequentially in order

given by 𝜌(𝑠) by accepting or rejecting the proposal. This process continues

until either (i) one player rejects proposal 𝑥 or (ii) all players in 𝑅(𝑠) have
accepted it.

If all responders accept 𝑥, the proposed allocation is implemented and the
6The assumption of independence allows me to dispense with conditioning on the current state
whenever expectations about future realizations are formed and follows standard random pro-
poser bargaining games. However, a more general Markov process, for example one that preferen-
tially selects among states on the route that was most recently active, would leave results qualita-
tively unaffected as long as it is ergodic.

7This assumption is natural given the restriction that only players on the active route get to respond
to a proposal. Furthermore any accepted proposal that offered a strictly positive payoff to excluded
players would not be optimal in a stationary equilibrium.
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game ends. If the proposer passes or at least one responder rejects the pro-

posed split, the bargaining round ends, and the game moves to the next pe-

riod in which a new state 𝑠′ consisting of both a route 𝑅(𝑠′) and a new order

of play 𝜌(𝑠′) is drawn and the bargaining process is repeated. This sequence

is continued until an allocation is accepted by all players.

Information Structure All players observe the realized states and all actions taken

by other players.

Payoffs Payoffs are linear in the share of surplus allocated, with common discount

factor 𝛿 ∈ (0, 1). If proposal 𝑥 is accepted in period 𝑡, player 𝑖 receives utility:

𝑢𝑖(𝑥) = 𝛿𝑡𝑥𝑖 (1)

We assume that the surplus to be allocated is bounded above such that 𝑢𝑖(𝑥) →
0 as as agreement time 𝑡 → ∞.

The model forms an infinite horizon dynamic game of complete information.

Players take a decision in two distinct roles: as proposer and as responder. As

proposer, a player either passes or suggests a split of surplus on a given route con-

ditional on the route selected and being selected as proposer. As responder, players

have to decide whether to accept or reject a proposed surplus division. A respon-

der’s decision is conditioned on the selected route and proposer as well as the sur-

plus division on the table. A history is defined by a sequence of realized states

and actions taken by players. A strategy specifies a feasible action at every possible

history when a player must act.

It is worth discussing briefly the assumptions on matching and bargaining un-

derlying themodel. Thematching protocol with cost of delay is intended to capture
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the frictions inherent in the trading protocol. For example, search frictions may

arise from identifying a possible counterparty or from eliciting their willingness

to trade. Furthermore, there may be frictions arising from intermediaries, such as

dealers in financial markets, identifying the regulatory implications of participa-

tion as described in Duffie (2010). Importantly, the result of the frictions is that

there exists an opportunity cost of not concluding a deal in any given state. In the

model, this opportunity cost consists of the utility cost of delay, the cost of ending

up in a weaker bargaining position from not being a proposer in a future state, and

— crucially for this paper — the cost of potentially being left out of a future trade

entirely. In addition, the simple frictions in the model may be thought of as a sum-

mary of more complex trading protocols, such as the “request for quotes” protocol

as studied in Burdett and Judd (1983), which is frequently employed in real-world

OTCmarkets. Burdett and Judd (1983) show that in their model the more complex

trading protocol can yield payoff outcomes identical to a much simpler bargaining

model.

Bargaining in themodel is multilateral and adopts the unanimity rule: the good

remains with the seller unless agreement with all intermediaries on the selected

route to the buyer has been reached. Thus, the model is applicable to markets in

which intermediaries act as a broker or agent, facilitating trade between buyers

and sellers, rather than ones in which intermediaries take possession of the good,

acting as a dealer instead.8 Considerations which arise in markets described by a
8Reporting of corporate bond markets suggests that in the wake of the 2008 financial crisis brokers
increasingly showed the behavior implied in the model: “In the wake of the financial crisis and
ahead of tighter regulatory constraints, largeWall Street dealers have become far lesswilling to hold
the risk of owning corporate bonds, known in market parlance as ‘inventory,’ to facilitate trading
for their clients. Instead, they are increasingly trying to match buyers and sellers, acting more as a
pure intermediary, rather than stockpiling bonds and encouraging a liquid market for secondary
trading.” Source: “Slimmer bond inventories as dealers reduce risk”, Financial Times, November 8,
2011.
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good “traveling” along the route, with intermediaries assuming ownership, such

as questions of hold-up (intermediaries being in possession of the good but not

intrinsically valuing it) or counterparty risk associated with disappearing resale

opportunities, thus, remain outside the model.9

3.1 Example State Space

To illustrate the model and the workings of the matching and bargaining protocol,

consider the network displayed in Figure 1. There is just one feasible trade routes

generating a surplus of 1. The trade route consists of one seller 𝐴, one intermediary

𝐼 and one buyer 𝐵. There are six feasible permutations of the three players on the

route. In total, there are thus six states as enumerated in the adjacent table.

I1

A

B

v = 1

𝑠 𝜋(𝑠) 𝑅(𝑠) 𝜌1(𝑠) 𝜌2(𝑠) 𝜌3(𝑠) 𝜅(𝑠)
1 1/6 {𝐴, 𝐼, 𝐵} 𝐴 𝐼 𝐵 𝐴
2 1/6 {𝐴, 𝐼, 𝐵} 𝐴 𝐵 𝐼 𝐴
3 1/6 {𝐴, 𝐼, 𝐵} 𝐼 𝐴 𝐵 𝐼
4 1/6 {𝐴, 𝐼, 𝐵} 𝐼 𝐵 𝐴 𝐼
5 1/6 {𝐴, 𝐼, 𝐵} 𝐵 𝐴 𝐼 𝐵
6 1/6 {𝐴, 𝐼, 𝐵} 𝐵 𝐼 𝐴 𝐵

Figure 1: Example Network and State Space with a Single Trade Route

9See the discussion in Rubinstein and Wolinsky (1987) concerning the difference between middle-
men taking ownership of the good and acting on consignment. Models exploring trade in networks
in which the good travels on a bilateral basis from seller to buyer are analyzed in Gofman (2017),
Condorelli, Galeotti, and Renou (2017) and Li and Schürhoff (2018).
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4 Equilibrium Payoffs

This section develops the equilibrium analysis of the model. We restrict attention

to stationary subgame perfect equilibria (SSPE), that is, subgame perfect equilib-

ria consisting of strategies which condition on payoff relevant histories only: the

state (selected route and order of proposals), and the offer on the table in the given

period. Stationary equilibrium payoffs are characterized as a fixed point to an intu-

itive system of recursive equations. All proofs in this as well as subsequent sections

are collected in the appendix.

Let 𝑓 be an expected payoff vector defined by 𝑓 = 𝐸𝜎

[
𝑓 (𝑠)] ∈ R𝑛 , where 𝐸𝜎 [·]

is the expectation operator for the probability distribution over the state space and

𝑓 (𝑠) ∈ R𝑛 denotes the vector of payoffs for players in state 𝑠. Define an operator A

on payoff 𝑓 which maps from R𝑛·|𝑆|+ to R𝑛·|𝑆|+ such that:

a. (Agreement) If 𝑣(𝑠) > 𝛿
∑
𝑗∈𝑅(𝑠) 𝐸𝜎

[
𝑓𝑗(𝑠′)

]
:

A𝑖( 𝑓 )(𝑠) =


𝑣(𝑠) − 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠)\𝑖 𝑓𝑗(𝑠′)

]
for Proposer 𝑖 = 𝜅(𝑠)

𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
for Responder 𝑖 ∈ 𝑅(𝑠) \ 𝜅(𝑠)

0 for Excluded 𝑖 ∉ 𝑅(𝑠)

(2)

b. (Delay) If 𝑣(𝑠) < 𝛿
∑
𝑗∈𝑅(𝑠) 𝐸𝜎

[
𝑓𝑗(𝑠′)

]
:

A𝑖( 𝑓 )(𝑠) = 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

] ∀ 𝑖 ∈ 𝑁 (3)
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c. (Mixing) If 𝑣(𝑠) = 𝛿
∑
𝑗∈𝑅(𝑠) 𝐸𝜎

[
𝑓𝑗(𝑠′)

]
:

A𝑖( 𝑓 )(𝑠) =

𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

] ∀ 𝑖 ∈ 𝑅(𝑠){
𝑥 : 𝑥 ∈ [

0, 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

] ]} ∀ 𝑖 ∉ 𝑅(𝑠)
(4)

The payoff operator A( 𝑓 ) distinguishes three cases depending on 𝑣(𝑠), the sur-
plus in state 𝑠. These can be interpreted as follows:

a. (Agreement) If the available surplus 𝑣(𝑠) exceeds the total expected value of

moving to the next period for players on the selected route (𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠)\𝑖 𝑓𝑗(𝑠′)

]
),

thenA( 𝑓 ) assigns to the proposer a payoff that extracts from responding parties

on the selected route all surplus over and above their discounted expected value

of moving to the next period given by 𝛿𝐸𝜎

[
𝑓 (𝑠′)] , leaving zero to players not in-

cluded on the route.

b. (Delay) If the available surplus 𝑣(𝑠) is less than the expected value of moving

to the next period for players on the selected route, thenA( 𝑓 ) assigns that payoff
to each player.

c. (Mixing) If the available surplus 𝑣(𝑠) is equal to the discounted expected value

of moving to the next period summed for players on the selected route, A( 𝑓 )
for these players is equal their discounted next period expected payoff. For ex-

cluded players the payoff is assigned to the interval in the real line between zero

and their discounted expected next period payoff.

A stationary equilibrium payoff of the bargaining game is a fixed point of this

correspondence. The proof follows standard approaches and is presented in the

appendix.
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Proposition 1. 𝑓 is an SSPE payoff if and only if A( 𝑓 ) = 𝑓 .

Existence of an equilibrium payoff vector can be established using Kakutani’s

fixed point theorem on the operator A.

Proposition 2. There exists an SSPE payoff 𝑓 .

The equilibrium payoff is supported by a strategy profile in which every player

adopts a strategywith the following standardproperties. When responding aplayer

accepts any offerwhich gives her at least the discounted expected next periodpayoff

and reject otherwise. If proposing, she offers every responder their outside option if

the residual amount is strictly larger than the proposer’s discounted expected next

period payoff. If the residual is strictly less, the proposer passes with probability

one. In case of indifference the proposer makes an offer as above with probability

between zero and one. We discuss the role of such “mixing” states further below.

Proposition 1 allows the analysis of equilibrium outcomes and payoffs for all

possible trade networks and buyer valuations based on a set of equations describ-

ing value functions in a recursive manner. We will exploit the characterization to

study efficiency and the impact of network structure on equilibrium outcomes in

subsequent sections. At this point it is worthwhile to emphasize the implications

of the “no replacement” assumption on equilibrium payoffs. Proposition 1 implies

that excluded players receive a zero payoff in states of agreement while they can

have a positive expected payoff in states of disagreement. The potentially positive

payoff in disagreement states reflects the fact that the players excluded in the cur-

rent state may be included in successful negotiations in a future period.

The zero payoff for excluded players in case of agreement presents a significant

difference to models with replacement (for example, Nguyen (2015) and Polan-

ski and Lazarova (2015)) in which players who do not take part in a trade that is
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concluded simply wait for the next period to be offered an essentially unchanged

environment opportunity. It significantly intensifies the competition between dif-

ferent trading routes as they vie to be included in the group that reaches agreement.

Section 6 provides further analysis on this topic.

In addition, the fact that excluded players in agreement states earn zero pay-

offs implies that an application of the proof of payoff uniqueness in every state in

Merlo and Wilson (1995) based on the contraction principle fails. In their proof,

Merlo and Wilson (1995) exploit the fact that the payoff for each player 𝑖 in state 𝑠

is bounded below by 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
, which allows them to show that the equilibrium

operator forms a contraction when using a suitable norm. In the model in this pa-

per, payoffs for an excluded player jump to zero under the operator A if player 𝑖

is excluded and there is agreement in state 𝑠. This implies that in some settings

the Merlo and Wilson (1995) norm for the payoff vector of all players can decrease

below the sum of their discounted expected future payoffs, which breaks the argu-

ment. A similar approach to show uniqueness is applied in Polanski and Lazarova

(2015), which likewise does not apply to the model with excluded players. Indeed,

the fact that these proofs of equilibrium payoff uniqueness for each state do not

work is unsurprising, given that in equilibria in mixed strategies with two or more

states on a route, different combinations of agreement probabilities across these

mixing state may support the same vector of expected equilibrium payoffs.

4.1 Example Equilibrium Payoffs

To illustrate the equilibrium payoff characterization of Proposition 1, we return to

the example in Figure 1. Given that the available surplus in every state is one,

we conjecture that agreement will take place in every state, compute the resulting
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payoffs, and verify the agreement decision later. Under the conjecture, buyer 𝐴

will receive a “responder” payoff of 𝛿𝐸𝜎

[
𝑓𝐴(𝑠′)

]
in four out of six states (3 − 6).

Thus, 𝑓𝐴(𝑠) = 𝛿𝐸𝜎

[
𝑓𝐴(𝑠′)

]
for 𝑠 ∈ {3, 4, 5, 6}. When proposing, 𝐴 will receive the

residual surplus after offering just enough to 𝐼 and 𝐵 to make them accept. Thus,

𝑓𝐴(1) = 𝑓𝐴(2) = 1 − 𝛿𝐸𝜎

[
𝑓𝐼(𝑠′)

] − 𝛿𝐸𝜎

[
𝑓𝐵(𝑠′)

]
. Plugging these expressions into the

expansion of 𝐸𝜎

[
𝑓𝐴(𝑠′)

]
yields:

𝐸𝜎

[
𝑓𝐴(𝑠′)

]
=

4
6𝛿𝐸𝜎

[
𝑓𝐴(𝑠′)

] + 2
6
{
1 − 𝛿𝐸𝜎

[
𝑓𝐼(𝑠′)

] − 𝛿𝐸𝜎

[
𝑓𝐵(𝑠′)

]}
(5)

By symmetry, identical expressions characterize 𝐸𝜎

[
𝑓𝐼(𝑠′)

]
and 𝐸𝜎

[
𝑓𝐵(𝑠′)

]
and in

equilibrium all three players receive the same payoff. We can solve Equation 5 for

𝐸𝜎

[
𝑓𝐴(𝑠′)

]
= 1

3 . Finally, the solution is consistent with our conjecture about agree-

ment behavior: because we have
∑
𝑖∈𝑅(𝑠) 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
= 𝛿 < 1 ∀ 𝑠 ∈ 𝑆 agreement in

all states is indeed optimal for every player.

5 Efficiency

This section discusses the efficiency properties of the equilibrium of the bargaining

game. Efficiency is achieved by adopting an optimal stopping rule which imple-

ments agreement in states offering sufficiently high surplus and delays otherwise.

Let 𝜙(𝑠) : 𝑆 → [0, 1] describe a function that for each state 𝑠 ∈ 𝑆 denotes the

probability of “stopping”. Stopping implies that the surplus 𝑣(𝑠) is collected and

the game ends. Not stopping implies that one period passes and a new state is

drawn. Given independence of the realizations of 𝑠 across time, the total surplus
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𝑤(𝜙) associated with a stopping rule 𝜙 is computed recursively by the expression

𝑤(𝜙) =
∑
𝑠∈𝑆

𝜋(𝑠) {𝜙(𝑠)𝑣(𝑠) + [
1 − 𝜙(𝑠)] 𝛿𝑤(𝜙)} (6)

The optimal stopping rule 𝜙∗ is defined as:

𝜙∗ = argmax
𝜙

𝑤(𝜙) (7)

Denote 𝑤∗ the ex-ante expected total surplus that can be derived under the op-

timal stopping rule 𝜙∗. By the principle of optimality, the efficient stopping rule 𝜙∗

satisfies a threshold rule for all 𝑠 ∈ 𝑆 that collects the available surplus 𝑣(𝑠) if it is
larger than 𝑤∗ and passes otherwise:

𝜙∗(𝑠) =


1 if 𝑣(𝑠) > 𝛿𝑤∗

𝜙 : 𝜙 ∈ [0, 1] if 𝑣(𝑠) = 𝛿𝑤∗

0 if 𝑣(𝑠) < 𝛿𝑤∗

(8)

The efficiency benchmark suggests two possible sources of inefficiency: there

may be too much trade or too little. Too much trade is conducted if the parties in-

volved in bargaining on a route agree to an allocation in a state in which it would be

efficient to delay. There is too little trade if the parties do not agree on an allocation

in a state where trade would be strictly efficient in the sense that available surplus

strictly exceeds what could be gained from waiting. I will show that the SSPE of

the game specified does not exhibit the latter type of inefficiency but is subject to

the former.

Proposition 3. In any SSPE players reach agreement with probability one in all states in
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which agreement is strictly efficient.

Proposition 3 implies a corollary for the simplified setting in which all feasible

routes generate the same surplus 𝑣. In this case, 𝑤∗ = 𝑣 and consequently efficiency

demands that trade be concluded immediately without delay.

Corollary 4. If 𝑣(𝑠) = 𝑣 ∀ 𝑠 ∈ 𝑆, in any SSPE trade is conducted immediately and the

equilibrium outcome is efficient.

A necessary condition for delay in this model is thereby the heterogeneity of

surplus across different routes.

Proposition 3 also implies that trade is concluded even along intermediation

routes which may involve relatively large numbers of intermediaries when shorter,

more direct routes are available. Thus, an intuitive prediction that it might be better

for buyer and seller to delay trade in such situations to avoid splitting the surplus

with toomany additional parties does not hold. This is because payoffs for interme-

diaries on the longer route are endogenously adjusted downwards in equilibrium,

reflecting the constraint exerted by the presence of the shorter route. Thus, in this

model there is no “strategic” cost from additional intermediaries per se. What mat-

ters for whether a route is actively traded over is the surplus it generates. This fea-

ture is an important implication of the model consistent with experimental results

reported in Choi, Galeotti, and Goyal (2017).

Can trade occur too early in equilibrium? Yes, as I will illustrate in a variation

of the example seen above. Consider a setting with a single seller and two possible

routes, each with one intermediary and one buyer, illustrated in Figure 2. The low

valuation route generates a surplus of 1 while the high valuation route generates

a surplus of 𝑣 ≥ 1. Assume as above a uniform stochastic process such that every

route is selected with probability 1/2 and along each route every player is selected
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with equal probability. Thus, each route is played half of the time and conditional

on a route being selected each of the three players is proposing with equal proba-

bility.

I1

A

B1

I2

v1 = 1 v2 = v ≥ 1

B2

Figure 2: Network with Two Asymmetric Intermediation Routes

The efficient outcome in this case involves either trade along both routes or trade

along the high value route with valuation 𝑣 only, depending on the discount factor

𝛿. Specifically, comparing expected total payoffs we can derive a first threshold

discount factor, 𝛿∗ = 2/(1 + 𝑣), at which delay and agreement on the low value

route generate the same payoff. For 𝛿 > 𝛿∗ efficiency requires trade to take place

only along the high value route. In contrast, the vector of equilibrium payoffs is

such that agreement takes place in low value states with positive probability for a

range of 𝛿 > 𝛿∗. To see why consider payoffs in a hypothetical equilibrium in which

trade takes place with the low valuation buyer with probability zero. In this case,

𝐸𝜎

[
𝑓𝐵1(𝑠)

]
= 𝐸𝜎

[
𝑓𝐼1(𝑠)

]
= 0 as this route would never be actively traded on. For

the players on the high value route (seller as well as the buyer and intermediary)

the payoff equations would then be symmetric like the example in Figure 1 and can

be solved for 𝐸𝜎

[
𝑓𝐴(𝑠)

]
= 𝐸𝜎

[
𝑓𝐵1(𝑠)

]
= 𝐸𝜎

[
𝑓𝐼1(𝑠)

]
= 𝑣/(6 − 3𝛿).

However, for 𝛿 smaller than a second threshold discount factor, 𝛿̃ = 6/(3 + 𝑣),
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this solution would imply 𝛿𝐸𝜎

[
𝑓𝑆(𝑠)

]
< 1, meaning that the seller’s discounted

expected next period payoff would be less than the surplus available on the low

valuation route. The seller would then have a profitable deviation to offer some

𝜖 > 0 to the buyer and intermediary on the low valuation route and the responders

would accept the offer. Thus, for 𝛿 < 𝛿̃ in every stationary equilibrium trade occurs

on the low surplus route with strictly positive probability.

Note that 𝛿∗ < 𝛿̃ and thus there is an interval of discount factors with strictly

positive measure in which equilibrium payoffs will be such that they imply trade

with positive probability with the low valuation buyer — despite this outcome be-

ing inefficient. Indeed, as 𝛿 increases within the interval
(
𝛿∗, 𝛿̃

)
we observe that

starting from 𝛿 > 2/5 ·
(
5 − √

10
)
≈ 0.735 the equilibrium involves mixed strategies

such that trade occurs on the low value route with a probability that is positive,

but strictly less than one. The intuition behind this property of the equilibrium is

that the seller is effectively keeping the low-value route “in play” to maintain her

strategic advantage relative to the high-value route.

Figure 3 summarizes the workings of the example with 𝑣 = 4 by plotting the

probability of agreement in low valuation states (Figure 3b), the total surplus (Fig-

ure 3c), and equilibrium expected payoffs for each player (Figure 3a) against the

discount factor 𝛿. The threshold discount factor 𝛿∗ above which trade on the low

value route becomes inefficient is 2/5 in this case. As Figure 3b illustrates, in equi-

librium trade occurs with probability one for an interval above this and then de-

clines smoothly, hitting zero at 6/7. In between these two values, the expected total

surplus realized in equilibrium is below the efficient one (Figure 3c).

Two further points are worth noting about the expected payoffs of the seller and

the downstream players (buyer and intermediary) as shown in Figure 3a. First, for

𝛿 > 6/7 we see the payoffs for the seller and the downstream players on the high
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Figure 3: Equilibrium with inefficient agreement

(a) Expected payoffs for each player
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value route overlapping, reflecting the “strategic symmetry” of the three players

whenever only the high value route is traded on. Each of the three players propose

with equal probability and therefore in equilibrium their expected payoffs will be

equal as well. Second, for 2/5 < 𝛿 < 6/7 the chart shows higher payoffs for the

seller, which illustrates the “strategic asymmetry” that results from the seller mak-

ing active use of her outside option of trading on the low value route.

The “too much trade” inefficiency identified here can be usefully thought of as

a hold-up problem: from an efficiency perspective the seller should “invest” by
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delaying in the low surplus state, accessing the social surplus of higher expected

valuation. However, if the seller adopted such a strategy, the symmetry between

the seller and the high valuation buyer and intermediary would result in equal

expected payoffs for all three players which leaves the seller worse off. Efficiency in

this case could be restored were the intermediary and buyer on the high valuation

route able to commit to compensating the seller for the delay decision by promising

a higher share of the surplus in the high value states. However, an SSPE does not

permit strategies that could implement such a promise.

Looked at from another perspective, the inefficiency can also be regarded as the

result of the seller’s privileged position when there are two alternative routes avail-

able and her unwillingness to give up the payoff benefits that result from having

such alternative sources of supply, even if it offers only an inefficiently low surplus.

Consider amodification of the example where we simply remove the low valuation

route, that is remove players 𝐼1 and 𝐵1, and replace the associated states in the state

space with automatic “delay”, that is, the ex ante probability of drawing the high

value route remains as before. In that case with only the high value route available,

the trading outcome would be efficient, even though we have removed opportuni-

ties to trade. In otherwords, a settingwith an additional trade route, a “thickening”

of themarket, can lead to a less efficient outcome than the same settingwithout that

route.10

Merlo and Wilson (1995) present a two-player example in their model without

excluded players in which there is equilibrium agreement in the first period even

though the available surplus is small in that period and delay would be Pareto im-
10While overall welfare is lower with the additional route, the seller payoff is higher, which suggests
that traders in these markets may have an incentive to (over-) invest in creating competing routes,
although a formal model of network formation would be required to analyze these incentives
appropriately (see also Elliott, 2015).

24



proving (see Figure 2 in Merlo andWilson (1995)). The reason for the early agree-

ment in their setting lies in the construction of the state space with two possible

states in the second period, both of which are absorbing, that is, whoever proposes

in that state will also be the proposer for all periods afterwards. In order to avoid

the risk of losing the right to propose for all future periods, both players are will-

ing to agree in the first period even though delay would permit Pareto improving

outcomes. The example presented in this paper differs from the one in Merlo and

Wilson (1995) in at least two ways. First, it illustrates that inefficiently early agree-

ment can also occur a more regular state space without relying on absorbing states,

as soon as one allows for players being excluded in certain states, which is the key

feature in the my paper. Second, while in the example in Merlo and Wilson (1995)

inefficient agreement occurs with probability one and to avoid outright entering a

disadvantageous future state, the network setting with excluded players in my pa-

per allows for mixed equilibria with agreement probabilities between zero and one

in the low surplus states. Players employ such mixed strategies not to prevent ar-

riving at the future state, but instead to influence the implied bargaining strength in

those future high surplus states, trading off the loss in the overall size of the surplus

with the greater share they can secure.

6 Network Structure and Equilibrium Payoffs

This section considers the relationship between structural features of the trade net-

work and equilibrium payoffs. One implication of Proposition 1 is that players ex-

cluded in a state where agreement is struck receive a zero payoff. Consequently,

players who find themselves in such situations may be expected to have their bar-

gaining power reduced. I investigate this question first by considering the way in
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Figure 4: A setting with 𝑘 intermediaries

which payoffs change as the number of competing intermediaries increases before

deriving a more general result by considering the impact of being “essential” to a

trade on payoffs. I restrict attention in the following to a setting in which all routes

generate the same surplus in all states such that 𝑣(𝑠) = 1 ∀ 𝑠 to focus attention on

the strategic competition between otherwise comparable routes.

6.1 Additional Intermediation Routes

To investigate the impact the number of intermediaries has on payoffs, consider first

a simple settingwith a single buyer and a set of 𝑘 intermediaries that directly link to

both a single seller and a single buyer for the asset (see Figure 4), each generating

a surplus of 1. Expected equilibrium payoffs for the end-nodes 𝐴 and 𝐵 and any

intermediary 𝐼𝑖 are then given by 𝐸[ 𝑓𝐴], 𝐸[ 𝑓𝐵] and 𝐸[ 𝑓𝐼𝑖 ], respectively:

𝐸[ 𝑓𝐴] = 𝐸[ 𝑓𝐵] = 𝑘 − 𝛿

𝑘 (3 − 𝛿) − 2𝛿 (9)

𝐸[ 𝑓𝐼𝑖 ] = 1 − 𝛿

𝑘 (3 − 𝛿) − 2𝛿 (10)

As expected, payoffs for end-nodes increase with the entry of additional inter-
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mediaries. Also, as 𝛿 → 1, payoffs for intermediaries go to zero. The ratio of the

payoffs is given by 𝑓𝐵/ 𝑓𝐼 = 1+ (𝑘 − 1)/(1− 𝛿). At 𝑘 = 1, the relative shares are equal

and as 𝑘 increases the ratio increases linearly at rate 1/(1 − 𝛿).

6.2 Limit Payoffs on a Network with Competing Routes

The analysis in the previous section illustrates the impact of competition in a sim-

ple setting with a set of competing intermediaries each connected directly to both

buyer and seller. One result of that analysis is that as trade frictions vanish in the

limit intermediaries receive an expected payoff of zero. This section shows how the

intuition derived from the simple example carries through tomore general network

structures.

Definition 1. A player 𝑖 is essential to a trade opportunity if 𝑖 ∈ 𝑅(𝑠) ∀ 𝑠 ∈ 𝑆.

The definition applies the spirit of the approach adopted in Goyal and Vega-

Redondo (2007) to the present model. Structurally speaking, a player is essential

if he is located on all possible trade routes between the buyer and the seller of the

good. Non-essential players can be circumvented and as a consequence they are

competing for the business of intermediating the trade opportunity.

We will show that the property of being essential has implications for payoffs

that players receive in equilibrium. In particular, in the limit as bargaining frictions

decline, only essential players receive a payoff that is different from zero.

Proposition 5. In an SSPE of the game with equal surplus in all states, if there exists

at least one essential player, the payoff of any non-essential player 𝑖 converges to zero as

bargaining frictions diminish as 𝛿 → 1.

Proposition 5 provides microfoundations for an analysis of competing interme-

diaries on networks and maps the intuitive Bertrand outcome into the bargaining
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setting investigated here. As such it provides a justification for the payoff struc-

ture used in Goyal and Vega-Redondo (2007), who investigate incentives for net-

work formation in a setting with intermediation rents. While they assume that

non-essential players receive zero payoff, justifying it as the kernel and core in a

cooperative bargaining setup, the present analysis may provide some grounding

for this assumption in a non-cooperative bargaining setting.

In addition, the result refines a prediction found in Choi, Galeotti, and Goyal

(2017) and provides a theoretical underpinning for the experimental findings in

that paper. In Choi, Galeotti, and Goyal (2017) the authors present a model of

trade in a network with posted prices. The model exhibits multiplicity of Nash

equilibria in settings with competing intermediaries, with strictly positive payoffs

for these intermediaries in some equilibria and zero payoffs in others. The authors

draw on this indeterminacy regarding the division of surplus in part to motivate

an experimental investigation and they find that in a laboratory setting intermedi-

aries that cannot be avoided extract a higher share of surplus. By contrast to the

theoretical model in Choi, Galeotti, and Goyal (2017), Proposition 5 implies that

non-essential intermediaries earn zero payoff in every equilibrium, consistent with

their experimental evidence.

7 Conclusion

In this paper, I study a model of bargaining and exchange with intermediation on

networks, extending the Merlo and Wilson (1995) framework as a tool to analyze

stochastic bargaining games into a network setting. I characterize payoffs with a

simple set of value function equations allowing the analysis of efficiency and the

impact of structure on payoffs in equilibrium outcomes. I find that trade in settings
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with homogeneous valuations across all routes, trade is efficient. However, with

heterogeneity of surplus across routes, there can be too much trade in the shape of

inefficiently early agreement in equilibrium, arising from a potential hold-up prob-

lem. Competition between alternative routes is shown to reduce payoffs. For the

case of equal surplus across routes and states, in the limit as bargaining frictions

disappear, all players who are not essential to a trade opportunity receive zero pay-

offs in equilibrium. I have imposed several simplifying assumptions to offer a clean

and transparent exposition of the main channels at work in my model. The same

qualitative insights would likely remain valid if the model were generalized in a

number of possible directions, including a more general stochastic process of se-

lecting routes and proposers.

The present analysis suggests there is scope for future research in several di-

rections. These include, notably, a more explicit study of the implications of the

bargaining model for network formation identifying the incentives for players to

invest in connections. The resulting predictions can then be compared to those

in models with different payoffs structures including for example Babus and Hu

(2017) and Goyal and Vega-Redondo (2007).
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8 Appendix

8.1 Proof of Proposition 1

This section presents the proof of Proposition 1. The approach taken employs a

standard argument adapted fromMerlo andWilson (1998). The proof of the propo-

sition requires demonstrating that 𝑓 is an SSPE payoff if and only if A( 𝑓 ) = 𝑓 .

Proof. Direction⇒: “ 𝑓 is an SSPE payoff” implies “A( 𝑓 ) = 𝑓 ”

Consider an SSPE payoff 𝑓 and fix a state 𝑠 with 𝑖 = 𝜅(𝑠). Given 𝑓 , it is a best

reply for responder 𝑗 to a given proposal 𝑥 to reject if 𝑥 𝑗 < 𝛿𝐸𝜎

[
𝑓𝑗(𝑠′)

]
and to accept

if 𝑥 𝑗 > 𝛿𝐸𝜎

[
𝑓𝑗(𝑠′)

]
. This implies that 𝑖 can earn 𝑣(𝑠) − 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠), 𝑗≠𝑖 𝑓𝑗(𝑠′)

]
from

making a proposal that is accepted and 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
from passing. Thus, if 𝑣(𝑠) <

𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
, the proposer will pass in a SSPE and 𝑓𝑖(𝑠) = 𝛿𝐸𝜎

[
𝑓 (𝑠′)] ∀ 𝑖.

If 𝑣(𝑠) > 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
, 𝑖 will make a proposal in an SSPE that is accepted,

earning:

𝑣(𝑠) − 𝛿𝐸𝜎


∑

𝑗∈𝑅(𝑠), 𝑗≠𝑖
𝑓𝑗(𝑠′)

 for 𝑖 (11)

𝛿𝐸𝜎

[
𝑓𝑗(𝑠′)

]
for 𝑗 ∈ 𝑅(𝑠) \ 𝑖 (12)

0 for 𝑘 ∉ 𝑅(𝑠) (13)

If 𝑣(𝑠) = 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
, the proposer is indifferent with 𝑓 (𝑠) = 𝛿𝐸𝜎

[
𝑓 (𝑠′)]

again. This implies that in an SSPE an agreement can be reached with any proba-

bility between zero and one, which implies payoffs for any excluded player 𝑘 that

are in
[
0, 𝛿𝐸𝜎

[
𝑓𝑘(𝑠′)

] ]
. Thus A( 𝑓 ) = 𝑓 .

Direction⇐: “A( 𝑓 ) = 𝑓 ” implies “ 𝑓 is an SSPE payoff”

30



AssumeA( 𝑓 ) = 𝑓 . We show that 𝑓 is an SSPE payoff by defining a suitable strat-

egy profile and demonstrating that no player can be better off by unilaterally deviat-

ing. The strategyprofile instructs proposers to pass unless 𝑣(𝑠) < 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
in which case the proposer offers each responder 𝑗 the

[
𝑓𝑗(𝑠′)

]
. Responders will

then accept, which yields 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
. Now, given payoffs 𝑓 there is no incentive

for any 𝑗 ∈ 𝑅(𝑠) \ 𝑖 to deviate and reject. For player 𝑖, there is no incentive to

deviate as 𝑓𝑖(𝑠) ≥ 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
. Finally, for 𝑘 ∉ 𝑅(𝑠), the rules are such that no ac-

tion is taken and thus there is no possibility for deviation to consider. Similarly,

if 𝑣(𝑠) > 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
given decision rules by responders, proposer 𝑖 can-

not benefit from deviating to a proposal that is accepted with positive probability.

Finally, if 𝑣(𝑠) = 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠) 𝑓𝑗(𝑠′)

]
the strategy profile instructs the proposer to

make an acceptable proposal with positive probability 𝜙(𝑠) such that for excluded

players 𝑘 𝜙(𝑠) · 𝐸𝜎

[
𝑓𝑘(𝑠′)

]
= 𝑓𝑘(𝑠) as required.

□

8.2 Proof of Proposition 2

We prove existence of equilibrium by showing the existence of a fixed point of the

correspondence A. The argument is standard and makes use of Kakutani’s fixed

point theorem.

Proof. A is a self-mapping on the space of payoffs which is a subspace 𝑋 ⊆ R𝑛·|𝑆| . 𝑋

is non-empty, closed, bounded and convex. Boundedness can be seen by recogniz-

ing that the maximum payoff of any player in any state is the maximum valuation

across all states.

Now,A is single valued for most of its domain. It can be set valued for excluded

players where payoffs for active players are equal for agreement and delay. In those
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instances the correspondence Amaps into a closed interval which implies that the

correspondence is convex. Finally, the end-points of the interval are such that A

has a closed graph.

Then by Kakutani’s Fixed Point Theorem A has a fixed point. □

8.3 Proof of Proposition 3

Weproof by contradiction. Suppose there exists a state 𝑠 such that (i) in equilibrium

no agreement is truck and (ii) a decision to delay is strictly not efficient, implying

that 𝑣(𝑠) > 𝛿𝑤∗.

Now, for delay to be an equilibrium outcome Proposition 1 requires that:

𝑣(𝑠) ≤ 𝛿
∑
𝑖∈𝑅(𝑠)

𝐸𝜎

[
𝑓𝑖(𝑠′)

]
(14)

𝑤∗ being the maximum total surplus that can be achieved under any stopping

rule, it also is the maximum expected payoff that all players can jointly achieve,

and thus it must be at least as large as the payoff available to players that are on the

trade route 𝑅(𝑠) in state 𝑠. It follows that:

∑
𝑖∈𝑅(𝑠)

𝐸𝜎

[
𝑓𝑖(𝑠′)

] ≤∑
𝑖∈𝑁

𝐸𝜎

[
𝑓𝑖(𝑠′)

] ≤ 𝑤∗ (15)

Combining these terms, we get:

𝑣(𝑠) ≤ 𝛿
∑
𝑗∈𝑅(𝑠)

𝐸𝜎

[
𝑓𝑗(𝑠′)

]
(16)

≤ 𝛿𝑤∗ (17)
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where the final step establishes the contradiction with leg (ii) of the premise. □

8.4 Proof of Proposition 5

Beforewe show that limit payoffs for non-essential players converge to zero, wewill

prove a supporting lemma.

Lemma 6. In an SSPE of the game with equal surplus in all states, the limit payoff of any

essential player 𝑖 is the same in every state as 𝛿 → 1.

Proof of Lemma 6: First, note that by Corollary 4, there is agreement in every state

given that 𝑣(𝑠) = 𝑣 ∀ 𝑠 ∈ 𝑆. Now, let player 𝑖 be essential and consider 𝑓𝑖(𝑠), the
payoff for player 𝑖 in state 𝑠. As player 𝑖 is essential, the player will earn either the

responder payoff or the proposer payoff with agreement in any state. As respon-

der, the payoff to player 𝑖 will be the discounted expected payoff 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
. As a

proposer, the payoff to 𝑖 will be 𝑣− 𝛿𝐸𝜎

[∑
𝑗∈𝑅(𝑠)\𝑖 𝑓𝑗(𝑠′)

]
, which is at least as large as

𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
by the fact that there is agreement. The payoff to an essential player is

thus never less than 𝛿𝐸𝜎

[
𝑓𝑖(𝑠′)

]
in any state, which in the limit, as 𝛿 → 1, converges

to 𝐸𝜎

[
𝑓𝑖(𝑠′)

]
, the expected payoff to player 𝑖. As the expectations operator presents

a weighted average over all states, this implies that in the limit as 𝛿 → 1 player 𝑖’s

payoff will converge to 𝐸𝜎

[
𝑓𝑖(𝑠′)

]
in every state. □

Next, wewill show that Lemma 6 implies that if there exists at least one essential

player the payoff for any non-essential player in any state in which they are propos-

ing converges to the expected payoff. Consider a non-essential player 𝑗 and state

𝑠 such that player 𝑗 is proposing in state 𝑠. Let player 𝑖 be an essential player that

is responding in that state. Furthermore, let 𝑠 be a second state on the same route

such that 𝑅(𝑠) = 𝑅(𝑠) = 𝑅, but with roles reversed so that player 𝑖 is the proposer

in state 𝑠 and player 𝑗 is a respondent.
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Then, fromLemma 6we know that in an SSPE the limit payoff to 𝑖 as 𝛿 → 1 is the

same across the two states 𝑠 and 𝑠. Furthermore, Proposition 1 implies that payoffs

for all players other than 𝑖 and 𝑗, who are either responding or excluded in both

states, are the same in states 𝑠 and 𝑠 as well. Now, given that the available surplus

is 𝑣(𝑠) = 𝑣(𝑠) = 𝑣 it follows that in the limit the payoff for non-essential player 𝑗

is the same across the two states 𝑠 and 𝑠 as well. In other words, in the limit the

payoff to the non-essential player 𝑗 in any state where 𝑗 is proposing converges to

the expected payoff 𝐸𝜎

[
𝑓𝑗(𝑠′)

]
.

Finally, as the expectations operator presents a weighted average over all states

and by Proposition 1 player 𝑗 never receives a payoff greater than in states where

𝑗 is proposing, we have that the limit payoff for player 𝑗 is the same across states.

As 𝑗 is non-essential, there exists at least one state arriving with strictly positive

probability in which player 𝑗 is excluded and receives a zero payoff and thus we

deduce lim𝛿→1 𝐸𝜎

[
𝑓𝑗(𝑠′)

]
= 0 as required. □
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